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ABSTRACT 

Classical radar signal processing techniques assume that the 

signal interference is Gaussian in nature. However, it has been 

shown that this interference or clutter is not always Gaussian. 

When non-Gaussian clutter exists, other signal processing 

techniques which are optimal or more robust in non-Gaussian clutter 

may be more effective than the classical techniques. This requires 

determination of the clutter characteristics for each clutter 

region and then applying the appropriate signal processing 

technique to the data ideally in 'real-time'. In order to achieve 

'real-time' it is necessary to determine this approximate PDF using 

small sample data set sizes. However, until the development of the 

Ozturk Algorithm, there has not existed an efficient algorithm to 

determine an approximate PDF for a small clutter data sample set. 

The Ozturk Algorithm is a new statistical algorithm capable of 

approximating the PDF of a set of random data using on the order of 

100 sample points, whereas, classical techniques typically require 

thousands samples. It consists of two parts, a Goodness-of-fit 

Test and the PDF Approximation. The Goodness-of-fit Test 

determines whether a sample data set is statistically consistent 

with a given PDF. The PDF Approximation selects the 'best' 

approximate PDF from a variety of PDFs and is simply an extension 

of the Goodness-of-fit Test. 

This report describes the Ozturk Algorithm and shows an 

application of the algorithm to some temporal L-band radar clutter 

data. 
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1.  Introduction to the Ozturk Algorithm: 

The Ozturk Algorithm was developed by Dr. Aydin Ozturk, while he 

was a visiting Professor at Syracuse University, Syracuse, NY. The 

Ozturk Algorithm consists of two major parts, the Goodness-of-fit 

Test, and the PDF Approximation. The Goodness-of-fit Test 

determines whether or not a sample data set is statistically 

consistent with a given PDF. The PDF Approximation is an extension 

of the Goodness-of-fit Test, and results in the selection of a 

'best' PDF which approximates the sample data set, using a closest 

linear distance measure. 

This algorithm takes on the order of 100 data samples from any 

random data set to perform the Goodness-of-f it Test and PDF 

Approximation. It has been extensively tested for independent 

random data generated from a known distribution. It also, appears 

to work well with radar clutter data. The qualifier, 'appears' is 

used since the radar clutter data is of unknown distribution and 

thus it is more difficult to judge the result of the approximate 

PDF selection. 

Note, that as the number of data samples used by the algorithm to 

determine the approximate PDF is increased (above a couple hundred 

samples), the algorithm becomes numerically inefficient and 

computationally intensive. 

The objective of this report is to introduce the concept behind 

the Ozturk Algorithm without the overuse of detailed mathematics, 

which can make the explanation cumbersome and at times confusing. 

A more detailed discussion of the statistical mathematics used in 

the algorithm can be found in the references. 
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2.  Advantages of the Ozturk Algorithm 

Classical techniques for determining a 'good' PDF fit for a set 

of data require large data sets (on the order of 10,000 points). 

Also, the researcher must first select a PDF to test the data set 

against and use the appropriate test for this PDF. If the PDF 

fails to fit the data, then the researcher must select another PDF 

to test the data set against with another separate test for this 

new PDF. In other words, classical techniques provide an answer to 

the question "is a set of random data statistically consistent with 

a specified PDF ?". 

The advantage of the Ozturk Algorithm is that only one test is 

performed, using a variety of PDF's on a much smaller data set (on 

the order of 100 points). The test determines which of the PDF's 

available best fits the data set. Furthermore, the algorithm 

provides a graphical representation of the goodness-of-fit and PDF 

approximation. Also, estimates of location, scale and shape 

parameters of the approximating PDF are available as outputs of the 

algorithm. 
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3.  Detailed Algorithm Description: 

This section describes the details of the algorithm and is 

organized by the two parts of the algorithm, 1) the Goodness-of fit 

Test and 2) the PDF Approximation. 

3.1.  Goodness-of-fit Test: 

The goodness-of-fit test is a complex algorithm which determines 

if the sample data provided to the algorithm is statistically- 

consistent with a given distribution (the null hypothesis). 

Typically the sample data is tested against a standard Gaussian 

distribution. However, it may be tested against any available 

distribution. 

In the Ozturk Algorithm, the reference distribution is the 

standard Gaussian distribution and the null hypothesis is the 

distribution against which the sample data is to be tested. Linked 

vectors are constructed for both the null hypothesis as well as the 

sample data set. The confidence contours are constructed around 

the terminal point of the null hypothesis linked vector. 

3.1.1.  The Linked Vector 

The algorithm provides a graphical method for observing the 

consistency of the sample data against a null hypothesis by 

producing two loci of linked vectors and a set of confidence 

contours as shown in Figure 1. 
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Figure 1:  Goodness-of-fit Test 
a) N = 6 points   b) Large N 

To obtain the linked vectors, first consider 1) the sample data 
set: 

1 '  2 '  3/ ■ ■ • • -Xj N 

with mean ßxl standard deviation ax, and length N, and 2) a null 

hypothesis data set generated from any available distribution 

against which the sample set will be tested: 

Z\ I %2 i ZZi -w 

with zero mean, unit variance and length N, and 

data set generated from the standard Gaussian: 
3) a reference 
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w1,w2,wz, wN 

Next reorder all data sets (ordered statistics) with the smallest 

value first: 

X1:N> X2:N'X3:N> ' ' ' ' XN:N 

Z1:N' Z2:N' Z3:N> ' " ' * ZN:N 

Wl:N> W2:N> W3:N<  '  •  •  ' WN:N 

Let, yi:N , for the sample linked vector be defined as: 

v  _ 
Xi:N~Vx 

°X 

The magnitude of the sample linked vector is the absolute value of 

yi:N. Also let, ti:N , for the null hypothesis be defined as the 

expected value of the i"1 ordered statistic of the null hypothesis 

distribution: 

ti:W=E[zi:„] . 

The magnitude of the null hypothesis linked vector is the absolute 

value of ti:N. Finally let, mi:N , be defined as the expected value 

of the i* ordered statistic of the reference distribution, the 

standard Gaussian: 

The expected values are obtained through a Monte-Carlo simulation 

consisting of 2 000 generated data sets for both the reference data 
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set and the null hypothesis. 

Note that when the null hypothesis is the same as the reference 

distribution, then ti:N for the null hypothesis is simply: 

The set of angles associated with each linked vector is defined as: 

e^-rccj) {mislf) , 

where: 

<Ma)=-£= f exp(--£)dt. 

Next set up the  co-ordinate  system Qk=[uk,vk],   where: 

U*=T £ ly^icosöi ;  k=l,2,3, . . .N 
K   i=i 

A: 

VTE!^i^lsin9i ;  k=l,2,3,...N 
A   i=l 

for the sample linked vector. The null hypothesis linked vector is 

obtained by replacing yi:N with ti:N in uk and vk above. 

Note that the angle theta is solely dependent on the reference 

distribution for all linked vectors, while the magnitude is solely 

dependent on the data chosen for the linked vector (e.g. for the 

sample linked vector, the magnitude is dependent on the normalized 
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ordered statistic of the sample data, for the null hypothesis 

linked vector, the magnitude is dependent on the expected value of 

the ordered statistic of the monte-carlo simulation of the null 

distribution). 

Further note that yi:N and ti:N are ordered statistics from smallest 

to largest, while the magnitudes of yi:N and ti:N, may no longer be 

true ordered statistics, due to standardization. If yi:N and ti:N 

contain negative values due to standardization, then their 

magnitudes would begin large, decrease to approximately zero and 

then increase again. 

Also, when N, the length of the data set, is large (on the order 

of 50 points), then the linked vector is a smooth arc. 

3.1.2.  The Confidence Contours 

The algorithm provides quantitative information as to how 

consistent the sample data set is with the null hypothesis 

distribution by the use of confidence contours. These contours are 

shown graphically in Figure 1. If the end point of the sample data 

set falls within one or more of these contours, then the sample 

data is considered to be statistically consistent with the null 

hypothesis with a given confidence level based on the confidence 

contour. Also note, that if the sample data is truly consistent 

with the null hypothesis, then the trajectory of the sample linked 

vector is likely to follow that of the null hypothesis linked 

vector. 
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3.1.2.1  Basic Concept 

Consider first that the linked vector for the null hypothesis is 

based on the expected values of the order statistic z for 2000 

monte-carlo simulations. Thus if one considers just one point 

along the linked vector, in particular the end point, the monte- 

carlo simulation provides 2 000 points of which only the expected 

value is plotted. However, these 2 000 points can also be analyzed 

for their distribution. 

To determine the confidence contours for the null hypothesis, fit 

a three dimensional bell shape (bivariate Gaussian) curve to the 

2000 points arising from the distribution of the (Monte-Carlo) end 

points for the null hypothesis linked vector. Then plot the 

contours of constant density of this distribution for various 

values of the parameter alpha, (e.g., 0.01, 0.05, and 0.10), where 

alpha is the probability that the end point falls outside the 

specified contour given that the data is from the null hypothesis 

distribution. Then unity minus alpha is known as the confidence 

level and the corresponding contour is known as the confidence 

contour.  Alpha is known as the significance level of the test. 

This may be repeated for any of the N points of the ordered 

statistic, z, along the null hypothesis linked vector. If the 

sample data is truly consistent with the null hypothesis, then the 

sample data's linked vector trajectory is will pass through a 

series of hoops defined by the confidence contours from all points 

along the null hypothesis linked vector and end within the last set 

of confidence contours. However, it is not necessary to clutter up 

the graphics with all these confidence contours, as the human eye 

can readily detect whether or not the linked vectors are closely 

following the same trajectory. Thus, only the last set of 

confidence contours are typically provided. 
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As the significance level of the test increases, the 

corresponding confidence level decreases and the confidence 

contours decrease in size. The closer the end point of the linked 

vector for the sample data falls to the center of the confidence 

contours, the more likely it is that the sample is from the null 

hypothesis. 

Also, for a given sample size, N, note that the i* angle which is 

dependent solely on the reference distribution remains unchanged 

and is used by all linked vectors. Also, the magnitude of the 

sample data linked vector is solely dependent on the sample data 

set. Thus, the linked vector for the null hypothesis distribution 

and the theta values associated with the sample size, may be 

tabulated based on N (and 2000 monte-carlo simulations). This 

table, which is dependent on N, for a given null hypothesis, and 

the theta values dependent on N, may be stored and recalled when 

desired. This can significantly reduce the computation 

requirements of the algorithm for a 'real-time' application. 

3.1.2.2  Detailed Description 

As previously described, the confidence contours are contours of 

the probability distribution of the null hypothesis linked vector 

end points from a monte-carlo simulation (2 000 points). To 

analytically determine the confidence contours, the joint PDF of U; 

and V; must be known. However, this joint PDF is difficult to 

determine analytically. Thus, it is necessary to rely upon 

empirical results. 
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The central limit theorem states that if M is sufficiently large 

and the random variables xk/ where k=[0,1,2,3.. . . M], are 

independent, and identically distributed, then under general 

conditions, the density function of their sum, properly normalized, 

tends to a normal curve as M approaches infinity. Assuming the 

conditions are satisfied, the central limit theorem allows the 

researcher to approximate the marginal PDFs of u; and v; as Gaussian 

for the monte-carlo simulation. In addition, through empirical 

analysis, it has been observed that the joint PDF of u; and v; can 

often be approximated as bivariate Gaussian. The bivariate 

Gaussian PDF is defined as: 

eXD {    -1    [ (»i-fu)  _ (2p(Uj-tlu) (Vj-Hy) + (Vj-\LV)2 ,1 

f      (U    v]- 
(2(1

-P
2
"     a_^z 4 

(27iouavV/l-p
2) 

where: 

Hu=E(Ui), \iv=E(Vl) 

p^E[ (»i-Hj (Vj-Hv) ] 

The mean, variance and correlation coefficient are all obtained 

empirically. 

It is well known that the locus of constant values of this PDF 
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will be an ellipse, and that it is maximum at the point, (ßu,ßv) • 

The ellipse degenerates into a circle when the variance of u; and 

Vj are equal and the correlation coefficient is zero. Also, it 

degenerates into a line that passes through its maximum as the 

correlation coefficient approaches ±1. 

In order to maximize the likelihood that the random variables u; 

and v; are Gaussian, the number of monte-carlo simulations should 

be large. To reduce the number of required simulations, the Ozturk 

Algorithm incorporates the Johnson System of Transformation 

(reference #3) . This technique transforms limited data sets in 

such a way as to approximate the resulting Gaussian distribution. 

Thus, only 2000 monte-carlo simulations are required to determine 

the appropriate marginal Gaussian PDFs and thus the bivariate PDF 

and its associated confidence contours. 

3.2.  PDF Approximation 

To select the 'best' approximate PDF the algorithm develops the 

PDF Approximation Chart as a visual aid. This chart is simply an 

extension of the Goodness-of-fit Test. In the Goodness-of-fit 

Test, a sample data set is tested for statistical consistency 

against a null hypothesis of a selected distribution.  The PDF 
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Approximation Chart takes this a step further by providing other 

distributions. These distributions are computed in the same manner 

as described previously for the null hypothesis in that the 

magnitude of the linked vector is computed from the expected value 

of the ordered statistic of 2000 monte-carlo simulations. However, 

the angle theta is still computed from the reference distribution 

and confidence contours are computed only for the null hypothesis. 

Refer to Figure 2 as an example of a PDF Approximation Chart. If 

all the linked vectors for the these various distributions were 

provided in the graphics, the plot would soon become too cluttered 

to properly interpret the data. Also, the primary information from 

the linked vectors is contained in the location of their respective 

end points. Therefore, only the end points of all linked vectors 

are provided in the approximation chart, along with the confidence 

contours (not shown in Figure 2) for the selected distribution 

(null hypothesis). 

For distributions dependent only on mean and variance (no shape 

parameters), such as Gaussian, there exists only one unique linked 

vector and thus only one point on the approximation chart is 

plotted. 

For distributions dependent on a single shape parameter, such as 

Weibull,  different values of the shape parameter result in 
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Gaussian 

Weibul! 

Sample 
Data 

u 

Figure 2:  PDF Approximation Chart 

different linked vectors. Consequently, the end point of the 

linked vectors is also dependent on the shape parameter. The end 

points corresponding to different shape parameter values are joined 

to obtain a single curve on the Approximation Chart. This curve 

provides a unique representation for the PDF dependent on a single 

shape parameter. 

Similarly, for a distribution dependent on two shape parameters, 
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such as the Beta distribution, a series of linked vectors must be 

computed in order to plot the surface on which the end point 

travels for varying shape parameters. This is performed by holding 

the first shape parameter constant and varying the second shape 

parameter to generate a curve, then changing the first shape 

parameter and again hold it constant while varying the second shape 

parameter, etc... until a family of curves is produced over the 

surface that the distribution occupies. 

Thus an approximation chart such as that shown in Figure 2 can be 

produced. This chart can then be used to identify the distribution 

that best approximates the sample data. 

If there is some reason to believe apriori that the sample data 

comes from a given distribution, e.g. Gaussian or Weibull with a 

given shape parameter, then the chosen null hypothesis would be 

selected to be this distribution. The goodness-of-fit test 

provides information as to whether or not the sample data is 

statistically consistent with the selected null hypothesis, a 

portion of this information is still present in the approximation 

chart in the constructed confidence contours. If the end point of 

the linked vector for the sample data falls within the confidence 

contours of the chosen null hypothesis, then no further work is 

required, as the sample data is statistically consistent with this 

hypothesis. However, if the end point for the sample falls outside 
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of the confidence contours then it is not statistically consistent 

with the null hypothesis. To select the best approximate PDF, the 

algorithm chooses the closest distribution to the sample and 

estimates the shape parameters of this distribution if required. 

The algorithm can also provide a rank order of selection for PDF 

approximation of all available distributions based on their 

respective distances from the sample data. 

The important point to note here is that although the linear 

distance from the sample data is the criteria used to order the 

various distributions, this is not the most accurate method, 

although it is the simplest. The circular confidence contours, as 

shown in Figures 1 is a special case of the confidence contours. 

In general, the confidence contours have been found to be 

elliptical and nearly circular for larger values of N (on the order 

of 50-100 points). However, under some conditions they may become 

quite elongated in shape. Therefore, the linear distance can give 

an idea of which PDF is the best approximating PDF, but the only 

accurate method is by determining the significance level for each 

PDF. However, due to the complexity and numerical computation 

efficiency required, this is not as simple as it seems. 
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4.  L-Band Radar Application 

The following is an example of the analysis capability of 

Ozturk's algorithm using actual radar measurement data from an L- 

band ground radar located in the RL/OC Surveillance Facility. 

The radar data used here is a time sequence from a single range 

cell in a 'stare' or 'searchlight' mode which contains a strong 

clutter signal. It has been shown that clutter data from a single 

range cell is locally Gaussian. This means that the individual 

quadrature components of the received signal are Gaussian. Thus 

the clutter magnitude is expected to be Rayleigh. 

Figure 3 shows the raw radar data from a single PRI (containing 

many range cells at a given azimuth direction). From this data 

range cell (bin) 90 was chosen as the test cell for strong clutter. 

Figure 4 shows the magnitude of the received radar signal from a 

single range cell for approximately 1000 PRIs. The cell chosen was 

bin 90. As can be seen and as expected for a ground radar the data 

is highly correlated with a fluctuating signal riding on top of a 

slowly varying deterministic signal. The deterministic portion of 

the signal can be thought of as the return from the ground, 

buildings and other stationary objects within the range cell. The 

fluctuating portion of the signal is the clutter of interest. This 
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Figure 3: L-Band Radar Data Figure 4: L-Band Radar Data 
(temporal data) 

would consist of signal returns from such objects as blowing grass, 

tree limbs and other non-stationary objects. Thus, in order to 

analyze the clutter of interest, a two-pulse cancellation is 

performed on the data. Note that this will provide uncorrelated 

data, but not necessarily independent data for the Ozturk 

Algorithm. After cancellation, the data was found to be lOdB 

higher than the noise, and thus contains a clutter signal. 

Figure 5 shows the Goodness-of-fit Test for the first 100 PRIs of 

the two pulse cancelled radar data against a Rayleigh PDF (the null 

hypothesis). This test shows that the 100 radar data points are 

statistically consistent with the Rayleigh PDF as expected. As can 

be seen from Figure 6, the histogram of the two-pulse cancelled 

radar data fits the Rayleigh PDF fairly well. 
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Figure 5: L-Band Radar Data 
Goodness-of-fit Test 

Figure 6: L-Band Radar Data 
1000 point Histogram 

As noted, temporal radar clutter data from a ground radar is 

typically expected to be locally Gaussian. However, for certain 

cases, especially for spatial radar clutter data, it has been shown 

that the clutter is not necessarily Gaussian. The algorithm, has 

been tested extensively with theoretical data and limitedly with 

temporal radar data. As yet it has not been tested with spatial 

radar data, which is expected to be non-Gaussian in general. All 

cases to date, of the limited testing with temporal radar data, has 

shown that the clutter is statistically consistent with the 

Rayleigh PDF. 

In order to show the application of the Ozturk Algorithm for PDF 
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approximation, a theoretical data sample is generated. In this 

case 1000 sample data points have been generated from the lognormal 

distribution. A shape parameter of 0.8 was chosen such that any 

100 point data sample set from this distribution will likely be 

CQ0DNESS-0F-FTT TEST 
Q   EQl   I   I    I  I    II   I   I    I   |   I   I   I    I II   I   I   I    |   I   I   I   I   I   I    I   I   I   |   I   I   I    I   I   I   I    I I    |   I   I   I 

fl.+Or 

Q.30 

S   a-2J° 
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Q.E10 

-a.io 

i i i i i i i i i i i. 

Null Hypothesis 

i.   Lognormal Sample Data 
(shape parameter = .8) 

Sample Data is Statistically Inconsistent with Rayleigh PDF    : 

■ ■ ■ i ■ ■ ■ ■ ■ i ■ i i ■ ■ ■ ■ ■ ■ ■ ■ ■ i ■ ■■■■ ■ ■ ■ ■ i ■ ■ i 1111 11 111111111 11 11111 11 11' 

-0.10 0.00 0.IQ Q.2D oja D.40 a.so 

Figure 7: Lognormal Data 

statistically inconsistent with the Rayleigh PDF.' As shown in 

Figure 7, the Ozturk Algorithm has determined that this sample set 
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is statistically inconsistent as expected. 

Thus, since the data is statistically inconsistent, the second 

portion of the algorithm is exercised in order to obtain an 

approximate PDF. From Figure 8, it can be seen that the data 

sample linked vector's end point lies closest to the Type-2 Gumbel 

0.6 
PDF APPROXIMATION CHART 

-i—i—i—r T^T 

O.O 
-0.20 

Lognormal 
Sample Data 

Type-2 Gumbel 
-i—i—i—i—i—I i—i i  i 
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Figure 8: Lognormal Data is Approximated by Gumbel PDF 

PDF. Thus, this PDF is chosen and its shape parameter is estimated 

to provide the approximate PDF. Note that the algorithm does not 

identify the true PDF, but rather, approximates the true PDF with 
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one it selects as the 'best' approximate PDF. 

In Figures 9 and 10 the histrogram of the data used for 

determining the approximate PDF is overlaid with the Rayleigh, 

Type-2 Gumbel and Lognormal PDFs. They show, in general, that the 

data definitely does not fit the Rayleigh PDF and that the Type-2 

Gumbel PDF is very similar in shape to the Lognormal PDF. However, 

a 100 point histogram is not a very good histogram, in the sense 

that there just isn't enough data to appreciate the shape of the 

histogram. Also, changing the bin size of the a 100 point 

histogram can have profound effects on the shape of the histogram. 

Thus the histogram and associated PDFs were extended to the 1000 

points available. 

Figures 11 and 12 show the 1000 point histograms overlaid with 

the Rayleigh, Type-2 Gumbel and Lognormal PDFs. Again, the 

histogram of the data obviously shows that the data is not 

consistent with the Rayleigh PDF. Also, the Type-2 Gumbel, 

determined from the first 100 points of the sample set, still 

approximates the Lognormal rather well. Furthermore, it could even 

be said that the Type-2 Gumbel PDF approximates this particular set 

of 1000 points better than the distribution from which they were 

generated, since the Gumbel PDF seems to fit the histogram better 

than the Lognormal PDF. 
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Figure 9: 100 Samples from the Lognormal PDF 
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Figure 10: 100 Samples from the Lognormal PDF 
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Figure 11: 1000 Samples from the Lognormal PDF 
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5.0 Conclusions 

The Ozturk Algorithm seems to perform as advertized. It 

efficiently determines an approximate PDF to a set of random data 

using on the order of 100 sample data points. It can select an 

approximate PDF from a variety of PDFs. In theory as well as in 

practice, the algorithm has so far performed well. 

The most difficult assumption required by the algorithm for the 

radar engineer to deal with is that the sample data must be 

independent. Radar clutter data, in general, is not necessarily 

independent. Although obtaining uncorrelated samples may not be 

terribly difficult, insuring independence is very difficult for the 

radar engineer. Data samples which are uncorrelated are not 

necessarily independent. The effect of uncorrelated, but not 

necessarily independent data on the algorithm's performance is a 

relevant issue. However, so far, the algorithm has appeared to 

perform well with radar measurement data. 

This promising algorithm needs to be exercised more fully to 

understand its advantages and application in the radar engineering 

field. One of the greatest potentials of this algorithm is 

providing the capability of determining the clutter characteristics 

using only a relatively small data sample size. In a clutter 

environment containing non-Gaussian as well as Gaussian clutter, 
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this capability might allow for the radar engineer through other 

algorithms, generally referred to as expert systems, to select the 

appropriate signal processing technique for the given clutter 

region in order to obtain better target detection than the 

classical techniques which assume Gaussian clutter statistics. 

Although the application described here is a radar engineering 

application, the Ozturk Algorithm may be very useful in many 

technical fields, both commercial and military. It may be 

especially useful in any field which makes use of imaging 

techniques and detection algorithms. 
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